Geospatial Software Institute (GSI)

Towards a National Geospatial Software Ecosystem

Mapping Multiscale Human Mobility Changes and Geospatial Modeling of COVID-19 Spread

Song Gao Geospatial Data Science Lab University of Wisconsin–Madison

Email: song.gao@wisc.edu https://geods.geography.wisc.edu/

Human Mobility Open Data Spring Up during COVID-19

Unacast Social Distancing Scoreboard **Google** and **Apple** Mobility Reports **Cuebiq, X-Mode**, **Descartes Lab**, and **SafeGraph** Google COVID-19 Community Mobility Reports

See how your community is moving around differently due to COVID-19

Human Mobility Open Data Spring Up during COVID-19

SafeGraph POI-type Foot-Traffic Changes

https://www.safegraph.com/dashboard/covid19-commerce-patterns

Human Mobility Open Data Spring Up during COVID-19

Individual-level trajectory tracking The Sturgis motorcycle Rally in South Dakota

~ 160 GB daily stream

http://www.citypages.com/news/minnesotas-sturgis-related-coronavirus-cases-are-here-expect-more/572209941

Human Mobility Data from Anonymous Mobile Phone Devices

Gao, S., Rao, J., Kang, Y., Liang, Y., & Kruse, J. (2020). Mapping county-level mobility pattern changes in the United States in response to COVID-19. SIGSPATIAL Special, 12(1), 16-26.

Mapping Human Mobility Changes in the US

https://geods.geography.wisc.edu/covid19/physical-distancing/

 Model
 Center
 Instance
 Instance

UW research project tracking public movement sees recent spike in travel

Association of Mobility Changes with Rate of COVID-19 Cases

Gao S, Rao J, Kang Y, Liang Y, Kruse J, Dopfer D, Sethi A, Reyes J, Yandell B, and Patz J. (2020) Association of mobile phone location data indications of travel and stay-at-home mandates with COVID-19 infection rates in the US. JAMA Network Open. 2020;3(9):e2020485.

The Effects of Stay-at-Home Mandates

edition.cnn.com/2020/09/08/health/stay-at-home-orders-co...

Increases in state doubling time ranged from 1.04 ~ 6.86 (**median: 2.7**) days to 3.66 ~ 30.29 (**median: 6.0**) days after orders.

Gao S, Rao J, Kang Y, Liang Y, Kruse J, Dopfer D, Sethi A, Reyes J, Yandell B, and Patz J. (2020) Association of mobile phone location data indications of travel and stay-at-home mandates with COVID-19 infection rates in the US. JAMA Network Open. 2020;3(9):e2020485.

Multiscale Dynamic Human Mobility O-D Flow Open Data SS GeoDS Lab @UW-Madison

Kang, Y., Gao, S., Liang, Y., Li, M., Rao, J., & Kruse, J. (2020). Multiscale Dynamic Human Mobility Flow Dataset in the US during the COVID-19 Epidemic. preprint arXiv:2008.12238. https://github.com/GeoDS/COVID19USFlows

Multiscale Dynamic Human Mobility O-D Flow Open Data

GeoDS Lab @UW-Madison

Kang, Y., Gao, S., Liang, Y., Li, M., Rao, J., & Kruse, J. (2020). Multiscale Dynamic Human Mobility Flow Dataset in the US during the COVID-19 Epidemic. preprint arXiv:2008.12238. https://github.com/GeoDS/COVID19USFlows

Infer Dynamic Population Flows

GeoDS Lab @UW-Madison

The visitor flows at three spatial scales are based on 10% of the entire population in the US. Using the American Community Survey (ACS) population data with mobile phone visitor patterns, the dynamic population-scale flows are estimated as:

$$pop_flows(o,d) = visitor_flows(o,d) \times \frac{pop(o)}{num_devices(o)}$$

- $pop_flows(o, d)$ the estimated dynamic population flows from o to d
- *visitor_flows(o, d)* the computed mobile phone-based visitor flow from *o* to *d*
- *pop(o)* the population at the geographic unit *o*
- *num_devices(o)* the number of unique mobile devices residing in *o*

geoid_o	geoid_d	Ing_o	lat_o	lng_d	lat_d	date_range	visitor_flows	pop_flows
01	01	-86.8445209956579	32.75687994183124	-86.8445209956579	32.75687994183124	2020-03-01	1074126	10716851.0
01	02	-86.8445209956579	32.75687994183124	-151.25054883603903	63.78846947897309	2020-03-01	50	498.0

In addition, we also compare the estimation results with a **gravity** model and a **radiation** model.

Gravity Model and Radiation Model Estimates

GeoDS Lab @UW-Madison	
-----------------------	--

		Date	Gravity Model			Radiation Model		
		Date	k	β	correlation	Nc/N	correlation	
Cuarity Madal	Radiation Model	03-02	0.000049300	0.8636853	0.6484	0.782	0.755	
Gravity Model		03-09	0.000062300	0.9010593	0.6301	0.763	0.751	
		03-16	0.000065800	0.9419980	0.6108	0.654	0.756	
		03-23	0.000070300	0.9505486	0.5852	0.619	0.753	
	$T_i = m_i \frac{N_c}{N}$	03-30	0.000078200	1.0023736	0.5698	0.579	0.748	
$K * P_i * P_j$		04-06	0.000072100	0.9754115	0.5656	0.572	0.749	
$H_{i,j} =$		04-13	0.000077600	0.9297287	0.5620	0.586	0.747	
d_{i}^{p}		04-20	0.000090900	1.0044105	0.5602	0.611	0.753	
ι, j		04-27	0.000076800	0.9284104	0.5682	0.627	0.756	
m	$m_i * n_i$	05-04	0.000080000	0.9269356	0.5690	0.629	0.757	
$T_{i,j}$	$T_{i,j} = T_i \frac{g}{(m_i + C_i) + (m_i + m_i) + C_i}$		0.000061200	0.8748065	0.5721	0.643	0.756	
	$(m_i + s_{ij}) * (m_i + n_j + s_{ij})$	05 - 18	0.000060800	0.8532109	0.5718	0.660	0.758	
		05 - 25	0.000061600	0.9175823	0.5645	0.671	0.756	

- Dynamic population flows are inferred based on the parameters.
- The correlation coefficients between the population flows and the flows estimated by gravity model and radiation model are calculated.

https://github.com/GeoDS/COVID19USFlows

State-Specific Geospatial Modeling of COVID-19 Spread

Quantifying the effect of timely quarantine and social distancing mandates.

 Chen, S., Li, Q., Gao, S., Kang, Y., & Shi, X. (2020). Mitigating COVID-19 outbreak via high testing capacity and strong transmission-intervention in the United States. medRxiv. <u>https://doi.org/10.1101/2020.04.03.20052720</u> Intra-County Geospatial Modeling of COVID-19 Spread

 Hou, X., Gao, S., Li, Q., Kang, Y., Chen, N., Chen, K. Rao, J., Ellenberga, J., & Patz, J. (2020). Intra-county modeling of COVID-19 infection with human mobility: assessing spatial heterogeneity with business traffic, age and race. medRxiv. <u>https://doi.org/10.1101/2020.10.04.20206763</u>

Dane County Social Distancing Dashboard

Summary Notes

- Mobile phone data can help track the mobility patterns and digital contact tracing
- Mobile phone sensors have different positioning accuracy; it also needs privacy considerations
- Health and social disparities require more attention; Fighting against COVID-19 requires coordination efforts and multidisciplinary collaboration

Geospatial Software Institute (GSI)

Towards a National Geospatial Software Ecosystem

Thank you!

https://geods.geography.wisc.edu