Introduction to the CyberGISX libraries

Shaohua (Roger) Wang

CyberGIS Center for Advanced Digital and Spatial Studies Department of Geography & Geographic Information Science University of Illinois at Urbana-Champaign

> Geospatial Fellows Program @ Zoom Oct 13, 2020

Team Members

- Weiye Chen
- Fangzheng Lyu
- Su Han
- Anand Padmanabhan
- Zhiyu Li
- Shaohua Wang
- Shaowen Wang

Introduction

- Challenges to conduct reproducible and replicable geospatial research
 - Data-intensive
 - Computation-intensive
 - Collaboration-intensive
- Geospatial analytics
 - Open source stack and open geospatial technologies
 - The diversity versions
 - Maximum coverage of different spatial libraries

Workflow

- Building CyberGISX-Lib
 - Testing the spatial library
 - The spatial dependency analysis for different spatial libraries
 - Installing developing environments
 - Installing spatial libraries with specifying the version
 - Running CyberGISX-Lib

Figure 1: Workflow for building CyberGISX-Lib

- Classes of python-based libraries
 - utility libraries
 - geospatial data processing
 - spatial analysis
 - geovisual analytics
 - spatial simulation
 - geospatial applications

Figure 2: classifications for CyberGISX-Lib

https://docs.google.com/document/d/1KUpcCLTSWaZKZQhRdJbOxMmMUPAazzhtsqf_pBmu5hE/edit

- Utility libraries
 - Support operations for reading numerical tables and time series, scientific computing for optimization, linear algebra, integration, interpolation, machine learning library with various classification, regression, and clustering.

- Geospatial data processing libraries
 - Support import/export geospatial datafiles (vector/raster/network, including shapefile, geojson files, geopackage), reprojection.
 - geospatial data abstraction library for reading and writing raster and vector geospatial data formats, building the spatial index, spatial data I/O, cartographic projections and coordinate transformations, and reading and writing spatial data.
 - Heterogeneous geospatial data sources can be pre-processed with data processing libraries.

- Spatial analysis libraries
 - Support building spatial index, spatial algorithms, spatial statistics, spatial interpolation, spatial optimization, spatial statistics, network analysis, and raster analysis.

- Geovisual analysis libraries
 - Support creating maps, charts, tables, large scale datasets visual and mapping, visualize geographical, meteorological, and oceanographic datasets, statistical data visualization, and statistical data visualization.

• Spatial simulation libraries

 An agent-based modelling (ABM) framework and python toolkits for modelling and simulation urban land use (urbanism and urbanaccess).

UrbanAccess

CyberGIS Center for Advanced Digital and Spatial Studies

- Geospatial applications
 - The CyberGISX support geospatial analysis in agriculture, geography, health, hydrology.

Figure 3: Flood address analysis with CyberGISX

Install spatial libraries

- Default kernel
 - Terminal or jupyter notebook
 - Using conda install
 - Using pip install

		Upload	New -	C
Name 🗸	Notebook:			
	Hydro-Python3			e
	Python 3			
	geoai-Python3			
	Other:			
_	Text F	ile		
	Folde	r		
	Termi	nal		

- Different kernel
 - conda activate geoai-py3
 - conda install or pip install

	Upload New - 2			
Name 🗸	Notebook:			
	Hydro-Python3			
	Python 3			
	geoai-Python3			
	Other:			
	Text File			
	Folder			
	Terminal			

Create a new kernel-qgis3 and install qgis

- conda create -y --name qgis3
- conda activate qgis3
- conda install -y -c conda-forge qgis=3.10.2 python=3.7
- conda install -y -c anaconda ipykernel
- /opt/conda/envs/qgis3/bin/python -m ipykernel install --user -name qgis3 --display-name qgis3

Deep learning with CyberGISX

- CPU-based Deep learning with CyberGISX
 - Tensorflow and keras
 - Install tensorflow with 'no avx'
 - Torch and fastai

https://docs.google.com/document/d/1pOzueZa0wVtYhX3mw-sP-PPm-XEY8e9uKrq1LkwIHJk/edit

Supporting geospatial studies

- COVID-19 Accessibility
 - Kang, J., Michels, A., Lyu, F. *et al.* Rapidly measuring spatial accessibility of COVID-19 healthcare resources: a case study of Illinois, USA. *Int J Health Geogr* 19, 36 (2020). https://doi.org/10.1186/s12942-020-00229-x
 - https://github.com/cybergis/COVID-19AccessibilityNotebook
- CyberGIS-Jupyter Notebooks
 - Examples and tutorials using cybergis-jupyter
 - https://github.com/cybergis/cybergis-jupyter-notebook-repo

Acknowledgements

- National Science Foundation
 - 1443080
 - 1743184
- UIUC
 - CyberGIS center for Advanced Digital and Spatial Studies
 - School of Earth, Society and Environment

Thanks !

Comments / Questions?

Email: <u>shaohua@illinois.edu</u>